EFFECTIVE LOWER BOUNDS FOR SOME LINEAR FORMS

BY

T. W. CUSICK

ABSTRACT. It is proved that if 1, α , β are numbers, linearly independent over the rationals, in a real cubic number field, then given any real number $d \ge 2$, for any integers x_0 , x_1 , x_2 such that $|\operatorname{norm}(x_0 + \alpha x_1 + \beta x_2)| \le d$, there exist effectively computable numbers c > 0 and k > 0 depending only on α and β such that $|x_1x_2|(\log|x_1x_2|)^{k\log d}|x_0 + \alpha x_1 + \beta x_2| > c$ holds whenever $x_1x_2 \ne 0$. It would be of much interest to remove the dependence on d in the exponent of $\log|x_1x_2|$, for then, among other things, one could deduce, for cubic irrationals, a stronger and effective form of Roth's Theorem.

1. Introduction. Let ||x|| denote the nonnegative distance from x to the nearest integer. The well-known theorem of Roth [11] asserts that for any real irrational algebraic number α and any $\epsilon > 0$, there is a constant c > 0 such that $q^{1+\epsilon}||q\alpha|| > c$ holds for all integers q > 0. Schmidt [12] has generalized this result to any number of dimensions. He proved that if $\alpha_1, \ldots, \alpha_n$ are any real algebraic numbers such that $1, \alpha_1, \ldots, \alpha_n$ are linearly independent over the rationals, then for any $\epsilon > 0$ there is a constant $c_n > 0$ such that

(1)
$$|q_1 q_2 \cdots q_n|^{1+\epsilon} ||q_1 \alpha_1 + \cdots + q_n \alpha_n|| > c_n$$

holds for all nonzero integers q_1, \ldots, q_n . He also proved a dual result, namely that, under the same hypotheses on $\alpha_1, \ldots, \alpha_n$, for any $\epsilon > 0$ there is a constant $c'_n > 0$ such that

$$(2) q^{1+\epsilon} \|q\alpha_1\| \cdots \|q\alpha_n\| > c'_n$$

holds for all integers a > 0.

The theorems of Roth and Schmidt are noneffective, that is, the constants c, c_n, c'_n cannot be effectively computed. Much recent work has been done on the problem of establishing effective lower bounds for $||q_1\alpha_1 + \cdots + q_n\alpha_n||$, where $\alpha_1, \ldots, \alpha_n$ are algebraic numbers. All of the effective lower bounds obtained so far are appreciably weaker than (1) (see the survey articles by Baker [1], [3]).

The main result of this paper is:

Presented to the Society, November 1, 1975; received by the editors March 13, 1975.

AMS (MOS) subject classifications (1970). Primary 10F10, 10F25; Secondary 10F05.

Key words and phrases. Diophantine approximation, Roth's Theorem, real cubic fields, Baker's effective estimates.

290 T. W. CUSICK

THEOREM 1. Suppose 1, α and β are numbers, linearly independent over the rationals, in a real cubic number field. Given any number $d \ge 2$, for any integers x_0 , x_1 , x_2 such that $|\operatorname{norm}(x_0 + \alpha x_1 + \beta x_2)| \le d$, there exist effectively computable numbers c > 0 and k > 0 depending only on α and β such that

(3)
$$|x_1x_2| (\log|x_1x_2|)^{k\log d} |x_0| + \alpha x_1 + \beta x_2| > c$$

holds whenever $|x_1x_2| > 1$.

The hypotheses of Theorem 1 are very restrictive, but inequality (3) is both effective and *stronger* than (1). Indeed, (3) is nearly best possible, for it follows from some work of Peck [10] that if 1, α , β are numbers, linearly independent over the rationals, in a real cubic number field, then the inequality

$$|x_1x_2| (\log |x_1x_2|)^{\frac{1}{2}} |x_0 + \alpha x_1 + \beta x_2| < 1$$

has infinitely many solutions in integers x_0 , x_1 , x_2 with $x_1x_2 \neq 0$. (Peck actually proved that $q \log q \|q\alpha\| \|q\beta\| < 1$ has infinitely many solutions with q > 0; one obtains the dual inequality stated above by using a transference principle of Mahler [9]. The argument, in a slightly different setting, is given in Cassels and Swinnerton-Dyer [6, p. 82].) Thus for fixed d inequality (3) can only be improved by decreasing the exponent of $\log |x_1x_2|$.

Of course it is natural to hope that the factor $\log d$ in the exponent of $\log |x_1x_2|$ could be removed altogether, for then Theorem 1 would hold with no condition on the norm of $x_0+\alpha x_1+\beta x_2$. This hope is plausible from a metrical point of view, because it is known (see Gallagher [8] and Spencer [13]) that for almost all pairs of real numbers α , β an inequality of the form (3) holds with $k\log d$ replaced by an absolute constant. If Theorem 1 were strengthened in this way, then it would follow from an application of Mahler's transference principle that there exist effectively computable numbers a>0 and c>0 depending only on α and β such that $q(\log q)^a \|q\alpha\| \|q\beta\| > c$ holds for all q>0. As an immediate corollary, we would have an inequality for all cubic irrationals which is both effective and stronger than Roth's Theorem.

2. Preliminaries. Let F denote the real cubic field containing α and β . For any number γ in F, we let $\gamma^{(0)} = \gamma$, $\gamma^{(1)} = \gamma'$, $\gamma^{(2)} = \gamma''$ denote the conjugates of γ . Let G denote the smallest field containing α , α' , α'' , β , β' and β'' . If F is a cyclic (totally real) cubic field, then F = G; otherwise G is a normal field of degree 6, which is totally real if and only if F is.

From here until §5 we suppose that F is totally real. The case of nontotally real F (§5) turns out to be simpler.

Let M denote the module $\{x_0 + \alpha x_1 + \beta x_2 : x_0, x_1, x_2 \text{ rational integers}\}$ and let $T = \{\gamma : \gamma \text{ in } F, M \text{ contains } \gamma M\}$ denote the coefficient ring of M. It follows from Dirichlet's unit theorem [4, p. 112, Theorem 5] that there exist two

units θ_1 and θ_2 in T such that every unit in T has the form $\pm \theta_1^m \theta_2^n$, where m and n are rational integers.

Let

(4)
$$\mathbf{R} = \det \begin{bmatrix} \log |\theta_1'| & \log |\theta_2'| \\ \log |\theta_1''| & \log |\theta_2''| \end{bmatrix}.$$

The regulator of T is $|\mathbf{R}|$, so $|\mathbf{R}|$ is not zero and is independent of the choice of the fundamental units θ_1 , θ_2 for T [4, p. 115].

If θ_1 , θ_2 is a pair of fundamental units for T, then so is $\theta_1^p \theta_2^q$, $\theta_1^r \theta_2^s$ for integers p, q, r, s such that $ps - qr = \pm 1$. Hence for any $\epsilon_0 > 0$ (however small) and any L > 0 (however large) it is possible to choose θ_1 in the pair θ_1 , θ_2 of fundamental units so that

(5)
$$||\theta_1/\theta_1''| - 1| < \epsilon_0$$
 and $|\theta_1'| > L$.

Later on in the paper (Lemmas 5 and 6) we shall require the inequalities (5) for certain explicitly calculable ϵ_0 and L. We assume from now on that a fixed pair θ_1 , θ_2 of fundamental units for T has been chosen in such a way that (5) holds for the relevant ϵ_0 and L. It is convenient to assume further that θ_1 , θ_2 have been chosen in such a way that θ_1 and θ_2 both have norm +1 and

(6)
$$\mathbf{R} = \text{regulator of } T > 0$$

(of course given any pair θ_1 , θ_2 we can satisfy (6) by simply replacing θ_2 by θ_2^{-1} , if necessary).

Define

$$D(1) = -\log |\theta_2'| + \log |\theta_2''|, \qquad D(2) = \log |\theta_1'| - \log |\theta_1''|.$$

Neither D(1) nor D(2) is zero. (Of course, D(2) > 0 by (5) if L is large enough; we assume this is the case.) Indeed, more generally, if $\gamma \neq \pm 1$ is any element of F, then $\gamma\gamma'^2 \neq \pm 1$. For $\gamma\gamma'^2 = \pm 1$ implies $\gamma'\gamma''^2 = \gamma''\gamma^2 = \pm 1$, and solving these equations gives $\gamma^9 = \pm 1$, which implies $\gamma = \pm 1$. We define η_0 , η_1 , η_2 (numbers which will be encountered later on) as follows:

(7)
$$\eta_i = |\theta_1^{(i)}|^{D(1)} |\theta_2^{(i)}|^{D(2)} \quad (0 \le i \le 2).$$

It is easy to see that

(8)
$$\log \eta_0 = -2R$$
, $\log \eta_1 = \log \eta_2 = R$.

For any pair of rational integers m, n define

$$R(m, n) = \theta_1^m \theta_2^n.$$

Since 1 is in M, the numbers R(m, n) are in M for all m, n and we have

(9)
$$R(m, n) = a_0(m, n) + a_1(m, n)\alpha + a_2(m, n)\beta$$

for some rational integers $a_i(m, n)$ $(0 \le i \le 2)$.

We now need to consider some results about the solutions in integers x_0 , x_1 , x_2 of the inequality

$$|x_0 + \alpha x_1 + \beta x_2| \max(x_1^2, x_2^2) < Q,$$

where Q is any constant ≥ 1 . Later on we will use these results in dealing with the expression $|x_0 + \alpha x_1 + \beta x_2| |x_1 x_2|$ in the proof of Theorem 1.

We first recall the well-known result [5, p. 79] that for 1, α , β linearly independent in a real cubic field there is a constant κ satisfying $0 < \kappa < 1$ and depending only on α and β such that

(11)
$$\kappa \leq |x_0 + \alpha x_1 + \beta x_2| \max(x_1^2, x_2^2)$$

holds for all integers x_0 , x_1 , x_2 with x_1 and x_2 not both zero.

Next we need the following lemma.

LEMMA 1. Let a be any nonzero rational number. Then in the module M there is a finite (possibly empty) set of numbers μ_1, \ldots, μ_k with norm a such that every solution γ of norm $\gamma = a$, γ in M, has a unique representation in the form $\gamma = \mu_i R(m, n)$ for some i $(1 \le i \le k)$ and some m, n.

PROOF. See [4, p. 118, Theorem 1].

From now on we use c_1, c_2, \ldots to denote positive constants which depend at most on α , β , θ_1 and θ_2 . Of course, since we have assumed that θ_1 and θ_2 have been chosen, we could as well say that c_1, c_2, \ldots depend at most on α and β . However, we shall sometimes wish to know that certain constants are the same whatever choice of θ_1 and θ_2 might have been made; this is not in general true for c_1, c_2, \ldots

If we let $\xi = x_0 + \alpha x_1 + \beta x_2$ and $\xi^{(i)} = x_0 + \alpha^{(i)} x_1 + \beta^{(i)} x_2$ $(0 \le i \le 2)$, then clearly

(12)
$$\max_{0 \le i \le 2} |\xi^{(i)}| \le c_1 \max_{0 \le i \le 2} |x_i|.$$

Since in Theorem 1 we are concerned with a lower bound for $|\xi|$, we may clearly assume that x_0 is always taken to be the nearest integer to $\alpha x_1 + \beta x_2$. Thus $|\xi| \leq \frac{1}{2}$ holds and so

(13)
$$\max_{0 \le i \le 2} |x_i| \le c_2 \max(|x_1|, |x_2|).$$

It follows from (12) and (13) that if (10) holds, then

(14)
$$|\xi| \max(|\xi'|^2, |\xi''|^2) < Q(c_1 c_2)^2.$$

By (14), norm ξ is bounded if ξ satisfies (10), so by Lemma 1 in looking at (10) we need only consider solutions of

(15)
$$|\delta R(m, n)| \max(b_1(m, n)^2, b_2(m, n)^2) < Q$$

where

(16)
$$\xi = \delta R(m, n) = b_0(m, n) + b_1(m, n)\alpha + b_2(m, n)\beta$$

for some rational integers $b_i(m, n)$ $(0 \le i \le 2)$ and where δ runs through some finite set (depending on Q) in M. Call this set $\Delta(Q)$.

We can be more explicit about the membership of $\Delta(Q)$. Let

(17)
$$\tau = \min\{|\operatorname{norm} \gamma| : \gamma \neq 0 \text{ in } M\}.$$

Of course the set on the right-hand side is discrete, and $\tau > 0$. It now follows from (14) that if $|\xi| \le \frac{1}{2}$ and (10) holds, then

(18)
$$\tau \leq |\operatorname{norm} \delta| < Q(c_1 c_2)^2.$$

Thus by Lemma 1, for each of the finite number of values d of norm δ satisfying (18), $\Delta(Q)$ contains some finite number of elements $\mu_1^{[d]}, \ldots, \mu_{k(d)}^{[d]}$, all of norm d.

We use the notation (a_{ij}) for a matrix with entry a_{ij} in the *i*th row and *j*th column.

LEMMA 2. The integers $a_i(m, n)$ $(0 \le i \le 2)$ in (9) satisfy

(19)
$$a_i(m, n) = \sum_{j=0}^{2} a_{ij} R^{(j)}(m, n) \quad (0 \le i \le 2)$$

where the coefficient matrix $A = (a_{ij})$ $(0 \le i, j \le 2)$ satisfies

$$(20) \quad A = \begin{bmatrix} 1 - \alpha a_{10} - \beta a_{20} & 1 - \alpha' a_{11} - \beta' a_{21} & 1 - \alpha'' a_{12} - \beta'' a_{22} \\ D_M^{-1}(\beta' - \beta'') & D_M^{-1}(\beta'' - \beta) & D_M^{-1}(\beta - \beta') \\ D_M^{-1}(\alpha'' - \alpha') & D_M^{-1}(\alpha - \alpha'') & D_M^{-1}(\alpha' - \alpha) \end{bmatrix};$$

here

(21)
$$D_{M} = \det \begin{bmatrix} \alpha' - \alpha & \beta' - \beta \\ \alpha'' - \alpha & \beta'' - \beta \end{bmatrix}$$

is one of the square roots of the discriminant of the module M.

The integers $b_i(m, n)$ $(0 \le i \le 2)$ in (16) satisfy

(22)
$$b_i(m, n) = \sum_{j=0}^{2} b_{ij} R^{(j)}(m, n) \quad (0 \le i \le 2)$$

where the coefficient matrix $B = (b_{ii})$ $(0 \le i, j \le 2)$ is given by

(23)
$$B = (\delta^{(j)} a_{ij}) \quad (0 \le i, j \le 2).$$

PROOF. Let C denote the matrix on the right-hand side of (21). We have the identity

$$C\begin{bmatrix} a_1(m, n) \\ a_2(m, n) \end{bmatrix} = \begin{bmatrix} R'(m, n) - R(m, n) \\ R''(m, n) - R(m, n) \end{bmatrix}.$$

Multiplying both sides by the inverse matrix C^{-1} gives (19) and (20) (the case i = 0 of (19) follows at once from the cases i = 1, 2 and (9)).

To prove (22) and (23) we apply the argument above to the identity

$$C\begin{bmatrix}b_1(m, n)\\b_2(m, n)\end{bmatrix} = \begin{bmatrix}\delta'R'(m, n) - \delta R(m, n)\\\delta''R''(m, n) - \delta R(m, n)\end{bmatrix}.$$

We note that any ratio of two numbers in the same row or column of A or B is in the field G. If F is cyclic (so F = G), then D_M is a rational integer and $a_{i1} = a'_{i0}$, $a_{i2} = a''_{i0}$ ($0 \le i \le 2$). In this case all the entries in A and B are themselves in F.

3. A technical lemma. It is clear from Lemma 1 that in $\Delta(Q)$ defined above we may replace any of the elements $\mu_i^{[d]}$ of norm d by $R(m, n)\mu_i^{[d]}$, where R(m, n) is any unit in the coefficient ring T. Let $\Delta(Q, d)$ denote the subset of $\Delta(Q)$ made up of those numbers with norm $\leq d$. It follows from (18) that $\Delta(Q, d)$ has a fixed number of elements for all $Q > d/(c_1c_2)^2$. Thus we may suppose $\Delta(Q, d)$ is independent of Q for Q large enough; call this set $\Delta^*(d)$. In the proof of Theorem 1 it will be necessary to ensure that for any μ in $\Delta^*(d)$, the absolute value of the ratio of any two conjugates of μ in F is bounded by a constant independent of the choice of θ_1, θ_2 . This can be achieved by replacing each element μ of $\Delta^*(d)$ by a suitable $R(m, n)\mu$; the following lemma is needed to show that such a replacement is always possible.

LEMMA 3. Let μ be any element of M. Then there exists a number ζ in M such that ζ/μ is a unit in T and

(24)
$$\max_{0 \leq i,j \leq 2} |\zeta^{(i)}/\zeta^{(j)}| \leq c_3$$

where c_3 is a constant depending only on the module M.

PROOF. Let φ_1 , φ_2 be any pair of fundamental units for T. If we define $\zeta = \varphi_1^x \varphi_2^y \mu$, then we can choose x and y so that

$$|\zeta^{(i)}| \le c |\operatorname{norm} \zeta|^{1/3} \qquad (0 \le i \le 2),$$

where c is a constant depending only on M [4, pp. 122-123]. Then ζ/μ is a unit in T and clearly (24) holds.

Given any number μ in $\Delta^*(d)$, we can replace μ by the corresponding number ζ given in Lemma 3. Thus we can assume

(25) for any
$$\mu$$
 in $\Delta^*(d)$, $\max_{0 \le i,j \le 2} |\mu^{(i)}/\mu^{(j)}| \le c_3$,

where c_3 depends only on α and β , and not on the choice of θ_1 , θ_2 in T. Furthermore, if μ_1 is in $\Delta^*(d_1)$ and, for some $d_2 \geqslant d_1$, μ_2 is a number in $\Delta^*(d_2)$ such that $\mu_2/\mu_1 = (p/q)\,R(m,\,n)$ for some unit $R(m,\,n)$ in T, where $p,\,q$ are rational integers and $p/q \geqslant 1$, then we can assume that $\mu_2/\mu_1 = p/q$. We shall say that each number μ in $\Delta^*(d)$ is canonical if this last assumption and (25) both hold.

We suppose from now on that every element of $\Delta^*(d)$ is canonical.

4. Proof of Theorem 1, totally real case. The first major ingredient in the proof of Theorem 1 is the following theorem of Baker [2, I].

THEOREM 2 (BAKER). Let $\sigma_1, \ldots, \sigma_n$ be nonzero algebraic numbers with degrees at most Σ and let the heights of $\sigma_1, \ldots, \sigma_{n-1}$ and σ_n be at most A' and $A \ \geqslant 2$, respectively. Then for some effectively computable number C > 0 depending only on n, Σ and A', the inequalities

$$0 < |p_1 \log \sigma_1 + \dots + p_n \log \sigma_n| < C^{-\log A \log P}$$

have no solution in rational integers p_1, \ldots, p_n with absolute value at most $P (\geq 2)$.

We have stated the theorem in the general form given by Baker, though we require only the special case n=3, $p_3=-1$ for the following lemma. We do not need the further refinement of Theorem 2 in the case $p_n=-1$ which is given by Baker [2, II, Theorem 2].

LEMMA 4. Given any number $d \ge 2$, if δ is canonical, $x_1x_2 \ne 0$ and $\xi = \delta R(m, n) = x_0 + \alpha x_1 + \beta x_2$ satisfies $|\text{norm } \xi| \le d$, then

$$(26) |x_1x_2(x_0 + \alpha x_1 + \beta x_2)| \ge c_4 / (\max(|m|, |n|))^{c_5 \log d}.$$

PROOF. We may assume that $|x_1| \ge |x_2|$; an argument parallel to what follows takes care of the case $|x_1| < |x_2|$. Since

$$|x_1x_2\xi| = |x_2/x_1|x_1^2|\xi| = |x_2/x_1||\xi| \max(x_1^2, x_2^2)$$

it follows from (11) that the lemma is true if we can prove

(27)
$$|x_2/x_1| > c_6/(\max(|m|, |n|))^{c_5 \log d}.$$

To do this, we first observe that by (16) and Lemma 2

(28)
$$x_1 = a_{10}\xi + a_{11}\xi' + a_{12}\xi'', \quad x_2 = a_{20}\xi + a_{21}\xi' + a_{22}\xi''.$$

We may assume that $|\xi|$ is very small, for otherwise (26) is trivial. If $|\xi|$ is small enough, it follows that

$$|x_2| \ge \frac{1}{2} |a_{21}\xi' + a_{22}\xi''|$$
 and $|x_1| \le c_7 \max(|\xi'|, |\xi''|)$,

296 T. W. CUSICK

(29)
$$|x_2/x_1| \ge c_8 |a_{21}\xi' + a_{22}\xi''|/\max(|\xi'|, |\xi''|).$$

We may assume $|\xi''| \ge |\xi'|$; a similar argument takes care of the case $|\xi''| < |\xi'|$. Thus we need a lower bound for the absolute value of

$$a_{21}(\xi'/\xi'') + a_{22} = a_{22}((b_{21}\theta_1''''\theta_2''')/b_{22}\theta_1'''''\theta_2''') + 1).$$

Applying Theorem 2 with n=3, $\sigma_1=|\theta_1'/\theta_1''|$, $\sigma_2=|\theta_2'/\theta_2''|$, $\sigma_3=|b_{22}/b_{21}|$, $p_3=-1$, we find that for any integers m, n not both zero either

(30)
$$|b_{21}\theta_1'^m\theta_2'^n| = |b_{22}\theta_1''^m\theta_2''^n|$$
 or

 $(31) \qquad |m\log|\theta_1'/\theta_1''| + n\log|\theta_2'/\theta_2''| - \log|b_{22}/b_{21}| | \ge 1/(\max(|m|, |n|))^{\nu},$

where $\nu > 0$ is a constant depending on the degree and height of b_{22}/b_{21} . In fact, Theorem 2 shows that ν is of the form $k_1\log(\operatorname{height}(b_{22}/b_{21}))$ where k_1 depends on the degree but not the height of b_{22}/b_{21} . However, $b_{22}/b_{21} = \delta''(\alpha' - \alpha)/\delta'(\alpha - \alpha'')$ is a number in G. Since δ is canonical, it follows from (25) with $\mu = \delta$ that the heights of δ' and δ'' are less than k_2d , where k_2 depends only on α and β . This implies (after some easy estimates) that the height of b_{22}/b_{21} is less than k_3d^{Γ} , where k_3 depends only on α and β , and Γ is an absolute constant. Hence in (31) we can take $\nu = c_9 \log d$. Now (27) follows easily after exponentiating (31) and applying the inequality $e^x > 1 + x$.

It remains to consider the case when (30) holds, so Theorem 2 does not apply. If (30) is true with the absolute value signs removed, then $a_{21}(\xi'/\xi'') + a_{22} = 2a_{22}$, so (27) is trivially true. If, on the other hand, $a_{21}\xi' + a_{22}\xi'' = 0$, then for some integers r and s we have (using (20))

(32)
$$-\frac{b_{22}}{b_{21}} = \frac{\delta''(\alpha - \alpha')}{\delta'(\alpha - \alpha'')} = \left(\frac{\theta'_1}{\theta''_1}\right)^r \left(\frac{\theta'_2}{\theta''_2}\right)^s.$$

Suppose (32) holds for two different canonical values of δ , say δ_1 and δ_2 (with possibly different values of r and s, of course). It follows that for some integers t and u we have

$$(\delta_1''/\delta_2'')\,\theta_1''^t\,\theta_2''^u\,=(\delta_1'/\delta_2')\theta_1'^t\,\theta_2'^u\ .$$

The two sides of this equality are numbers in different conjugate fields of F; hence both numbers are equal to some rational number q/p. This means $\delta_1(p/q)\theta_1^t\theta_2^u=\delta_2$, but since δ_1 and δ_2 are canonical we must have t=u=0 (see §3). Therefore even if (32) holds for various values of δ , the integers r and s do not change. It follows that

$$b_{21}\theta_1^{\prime m}\theta_2^{\prime n} + b_{22}\theta_1^{\prime\prime m}\theta_2^{\prime\prime n} = 0$$

is possible for at most one integer pair m, n. Even if there is such an exceptional

pair m, n, we can still ensure that (27) holds by adjusting the constant c_6 , if necessary. This completes the proof of the lemma.

In view of Lemma 4, if we could prove that

(33)
$$\log|x_1x_2| > c \max(|m|, |n|)$$

holds for some constant c depending only on α and β , then Theorem 1 would be proved. An inequality of the form (33) follows easily from (28) and the fact that $\xi = \delta \theta_1^m \theta_2^n$. However, the constant c obtained in this way depends on δ (and so on d); with such a constant, inequality (33) is useless for proving Theorem 1. In order to get around this difficulty, we need more information about m and n. The following theorem, which is the second major ingredient in the proof of Theorem 1, gives us what we need.

THEOREM 3. Suppose there exists $\xi = x_0 + \alpha x_1 + \beta x_2$ with norm of absolute value w such that (15) and (16) hold, with δ canonical. Then $|m - \lambda n| \leq K$ where $\lambda = D(1)/D(2)$ and K is a constant depending only on Q, w, α , β , and θ_1 . We can take

$$K = \frac{\log(hQ/w)}{D(2)} = \frac{\log(hQ/w)}{\log|\theta_1'/\theta_1''|}$$

where h depends only on α and β , and not on the choice of θ_1 and θ_2 .

PROOF. This is essentially a special case of the theorem of Cusick [7, p. 19], except for the evaluation of K. I repeat the proof of [7] with the changes needed to get an explicit K.

The norm $\xi \xi' \xi''$ has absolute value w, so by (14)

(34)
$$|\xi| \min_{i=1,2} |\xi^{(i)}|^2 = w^2 \left(|\xi| \max_{i=1,2} |\xi^{(i)}|^2 \right)^{-1} > (w/c_1c_2)^2 Q^{-1}.$$

Combining (14) and (34) gives

(35)
$$\max_{i=1,2} |\xi^{(i)}| < (c_1 c_2)^2 \, Q w^{-1} \, \min_{i=1,2} |\xi^{(i)}|$$

for any $\xi = \delta R(m, n)$ which satisfies (15).

If (15) holds then (25) with $\mu = \delta$ and (35) give

$$\max_{i=1,2} |R^{(i)}(m,n)| < (c_1c_2)^2 c_3 Qw^{-1} \min_{i=1,2} |R^{(i)}(m,n)|;$$

it follows that

$$|\log |R'(m, n)| - \log |R''(m, n)| | < \log((c_1c_2)^2c_3Q/w),$$

and so

(36)
$$m \log |\theta'_1| + n \log |\theta'_2| = \log |R''(m, n)| + \epsilon,$$

$$m \log |\theta''_1| + n \log |\theta''_2| = \log |R''(m, n)|,$$

where $|\epsilon| < \log((c_1c_2)^2c_3Q/w)$.

The system (36) has for its determinant the regulator R given by (4). Thus solving for m and n gives

$$m = D(1)R^{-1} \log |R''(m, n)| + \epsilon R^{-1} \log |\theta_2''|,$$

$$n = D(2)R^{-1} \log |R''(m, n)| - \epsilon R^{-1} \log |\theta_1''|.$$

Hence

$$|m - \lambda n| = |\epsilon \mathbf{R}^{-1} (\log \eta_2) D(2)^{-1}| \le D(2)^{-1} \log((c_1 c_2)^2 c_3 Q/w)$$

where η_2 is defined by (7), and for the inequality we have used (8) and the upper bound on $|\epsilon|$. It is evident that c_1 , c_2 and c_3 depend only on α and β , so we have Theorem 3 with $h = (c_1c_2)^2c_3$.

As was remarked earlier, we obviously need to consider only those solutions of (10) where x_0 is the nearest integer to $\alpha x_1 + \beta x_2$. Assuming this, we divide the integer solutions to (10) into classes according to the size of the left-hand side. In the first class the left-hand side of (10) is $\geq \kappa$ (defined in (11)) and < 1; in the second class the left side of (10) is ≥ 1 and < 2; and in the Nth class $(N=2,3,\ldots)$ the left side of (10) is $\geq 2^{N-2}$ and $< 2^{N-1}$. Thus any integer pair $(x_1,x_2)\neq (0,0)$ is in one of the classes, since it will satisfy (10) for Q large enough. Using this division into classes and Theorem 3, we prove the following lemma, which gives inequality (33) with a suitable constant when n>0.

LEMMA 5. If $\xi = \delta R(m, n) = x_0 + \alpha x_1 + \beta x_2$ with δ canonical, n > 0 and $x_1 x_2 \neq 0$, then $\log |x_1 x_2| > c_{10} n$.

PROOF. As in the proof of Lemma 4, we may assume $|x_1| \ge |x_2|$. Suppose x_1 , x_2 is in the Nth class of solutions to (10), so (10) holds for some $Q < 2^{N-1}$; also suppose |norm $\delta | = w$. By Theorem 3 and (7), (8)

$$(37) |R(m, n)| = \exp(-2RD(2)^{-1}n) |\theta_1|^{\epsilon}, |\epsilon| \leq K.$$

Since $\theta_1\theta_1'\theta_1''=1$ and, if ϵ_0 in (5) is chosen small enough and L in (5) is chosen large enough, $|\theta_1''|\approx |\theta_1|<1$, we have $2\log|\theta_1|+\log|\theta_1'|\approx 0$ and (using the definition of K in the first inequality, the definition $D(2)=\log|\theta_1'/\theta_1''|$ in the second inequality, and $Q<2^{N-1}$ in the third inequality)

(38)
$$|\theta_{1}|^{\epsilon} \leq \exp(-\log(hQ/w)D(2)^{-1}\log|\theta_{1}|) \\ \leq c_{11}\exp(-|\log|\theta_{1}|/\log|\theta_{1}\theta_{1}'^{2}||\log Q) \\ \leq c_{12}\exp(-N(1/3+\epsilon_{1})\log 2),$$

where $\epsilon_1 > 0$ is a small number depending on ϵ_0 in (5) (ϵ_1 decreases if ϵ_0 is chosen smaller).

By (18), $|\delta\delta'\delta''| < Q(c_1c_2)^2$, so it follows from (25) and the fact that δ is canonical that

(39)
$$|\delta| \le c_{13} Q^{1/3} \le c_{14} \exp((N/3)\log 2).$$

Since x_1, x_2 is in the Nth class of solutions, we have

$$(40) 2^{N-2} \leq |\delta R(m, n)| x_1^2$$

if N > 1 (for N = 1, the left side of the above inequality should be the number κ defined in (11)). Applying (37), (38) and (39) to (40), we obtain

$$x_1^2 \ge c_{15} 2^N \exp(-N(2/3 + \epsilon_1) \log 2 + 2RD(2)^{-1}n)$$

> $c_{16} \exp(2RD(2)^{-1}n)$,

where the second inequality holds if ϵ_1 is small enough. The lemma follows at once.

The inequality of Theorem 1 follows from Lemmas 4 and 5 provided n > 0. If $n \le 0$, then a result stronger than Theorem 1 is true, as we shall show using the following lemma.

LEMMA 6. Suppose $\xi = \delta R(m, n) = x_0 + \alpha x_1 + \beta x_2$ satisfies (10) with δ canonical and x_1, x_2 is in the jth class of solutions, $j \leq N$. If $n \leq N$ and $|x_1| \geq |x_2| > 0$, then

$$|x_2/x_1| > c_{17}/2^N$$
.

PROOF. Since x_1 , x_2 is in the Nth class of solutions, we have

$$|\delta R(m, n)| x_1^2 < 2^{N-1}.$$

Since δ is canonical and by (18) has norm of absolute value at least τ , (25) implies

(42)
$$|\delta| \ge c_{18} |\operatorname{norm} \delta|^{1/3} \ge c_{19}.$$

Equality (37) holds as before, and by the same reasoning used to prove (38) (the only difference is that here we want a lower bound) we obtain

(43)
$$|\theta_1|^{\epsilon} \ge c_{20} \exp(-N(1/3 + \epsilon_1)\log 2).$$

Since $D(2) = \log |\theta'_1/\theta''_1|$ is large if L in (5) is chosen large, we have

$$\exp(-2RD(2)^{-1}n) \ge \exp(-2RD(2)^{-1}N) \ge \exp(-\epsilon_2 N \log 2)$$

where $\epsilon_2 > 0$ is a small number depending on L in (5) (ϵ_2 decreases if $D(2)^{-1}$ is chosen smaller, that is, if L is chosen larger). Using this inequality, (37), (42) and (43), we see that (41) gives

$$x_1^2 < c_{21} \exp(((4/3) + \epsilon_1 + \epsilon_2)N \log 2).$$

If ϵ_1 and ϵ_2 are small enough and $x_1x_2 \neq 0$, this easily gives the inequality of the lemma.

Now suppose $n \le 0$ and the hypotheses of Lemma 6 hold (of course there is no loss of generality in assuming the hypothesis $|x_1| \ge |x_2|$). Since x_1 , x_2 is in the Nth class of solutions, we have

$$|x_1x_2\xi| = |x_2/x_1|x_1^2|\xi| \ge c_{22}|x_2/x_1|2^N$$
.

It follows from this and Lemma 6 that the inequality of Theorem 1 holds even without the logarithm factor, when $n \leq 0$.

It is, of course, not surprising that this stronger result holds in the cases $n \le 0$ because of (37) and the fact that we need only consider those pairs m, n for which $|\delta R(m, n)| \le \frac{1}{2}$. Since $RD(2)^{-1} > 0$, this means that for a given δ only a finite number of $n \le 0$ come into consideration.

5. Proof of Theorem 1, nontotally real case. In this section we suppose that F is nontotally real. The proof of Theorem 1 in this case follows the general pattern of the proof for the totally real case ($\S\S 2$ to 4), but the details are much simpler. Therefore we only sketch the proof.

The coefficient ring T of the module M has only one fundamental unit, say θ , which we suppose is < 1. Lemmas 1 and 2 are valid with the obvious changes (for example, R(m, n) must be replaced by θ^m). Lemma 3 holds as before, and the definition of canonical is the same.

We do not need any analogue of the conditions (5) or of Theorem 3 in the proof. We obtain an analogue of Lemma 4 by assuming the hypotheses of that lemma and using Theorem 2 with n=2, $\sigma_1=\theta'/\theta''$, $\sigma_2=b_{22}/b_{21}$ and $p_2=-1$. We obtain

$$|x_1x_2(x_0 + \alpha x_1 + \beta x_2)| \ge c_{23}/|m|^{c_{24}\log d}$$
.

We divide the solutions of (10) into classes as before; then analogues of Lemmas 5 and 6 are easily obtained. This completes the proof of the nontotally real case of Theorem 1.

REFERENCES

- 1. A. Baker, Effective methods in Diophantine problems, Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc., Providence, R.I., 1971, pp. 195-205. MR 47 #3324.
- 2. ____, A sharpening of the bounds for linear forms in logarithms. I, II, Acta Arith. 21 (1972), 117-129; ibid, 24 (1973), 33-36.
- 3. _____, Effective methods in Diophantine problems. II, Proc. Sympos. Pure Math., vol. 24, Amer. Math. Soc., Providence, R.I., 1973, pp. 1-7. MR 49 #2571.
- 4. Z. I. Borevič and I. R. Šafarevič, Number theory, "Nauka", 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York, 1966. MR 30 #1080; 33 #4001.
- 5. J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Math. and Math. Phys., no. 45, Cambridge Univ. Press, New York, 1957. MR 19, 396.
- 6. J.W.S. Cassels and H.P. F. Swinnerton-Dyer, On the product of three homogeneous linear forms and indefinite ternary quadratic forms, Philos. Trans. Roy. Soc. London Ser. A 248 (1955), 73-96. MR 17, 14.
- 7. T.W. Cusick, Diophantine approximation of linear forms over an algebraic number field, Mathematika 20 (1973), 16-23. MR 49 #4942.
- 8. P. X. Gallagher, Metric simultaneous Diophantine approximation, J. London Math. Soc. 37 (1962), 387-390. MR 28 #1167.
- 9. K. Mahler, Ein Übertragungsprinzip für lineare Ungleichungen, Časopis Pest. Math. Fys. 68 (1939), 85-92. MR 1, 202.

- 10. L. G. Peck, Simultaneous rational approximations to algebraic numbers, Bull. Amer. Math. Soc. 67 (1961), 197-201. MR 23 #A111.
- 11. K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20; corrigendum, 168. MR 17, 242.
- 12. W. M. Schmidt, Simultaneous approximation to algebraic numbers by rationals, Acta Math. 125 (1970), 189-201. MR 42 #3028.
- 13. D. C. Spencer, The lattice points of tetrahedra, J. Math. Phys. Mass. Inst. Tech. 21 (1942), 189-197. MR 4, 190.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801

Current address: Department of Mathematics, State University of New York at Buffalo, Amherst, New York 14226